
NAG C Library Function Document

nag_zhpgst (f08tsc)

1 Purpose

nag_zhpgst (f08tsc) reduces a complex Hermitian-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z
or BAz ¼ �z to the standard form Cy ¼ �y, where A is a complex Hermitian matrix and B has been
factorized by nag_zpptrf (f07grc), using packed storage.

2 Specification

void nag_zhpgst (Nag_OrderType order, Nag_ComputeType comp_type,
Nag_UploType uplo, Integer n, Complex ap[], const Complex bp[], NagError *fail)

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z or BAz ¼ �z
to the standard form Cy ¼ �y using packed storage, this function must be preceded by a call to nag_zpptrf
(f07grc) which computes the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the parameter comp_type, as indicated in the table below.
The table shows how C is computed by the function, and also how the eigenvectors z of the original
problem can be recovered from the eigenvectors of the standard form.

comp_type Problem uplo B C z

1 Az ¼ �Bz Nag_Upper
Nag_Lower

UHU

LLH

U�HAU�1

L�1AL�H

U�1y

L�Hy

2 ABz ¼ �z Nag_Upper
Nag_Lower

UHU

LLH
UAUH

LHAL

U�1y

L�Hy

3 BAz ¼ �z Nag_Upper
Nag_Lower

UHU

LLH

UAUH

LHAL

UHy
Ly

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: comp_type – Nag_ComputeType Input

On entry: indicates how the standard form is computed as follows:

if comp type ¼ Nag Compute 1,

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08tsc

[NP3645/7] f08tsc.1

if uplo ¼ Nag Upper, C ¼ U�HAU�1;

if uplo ¼ Nag Lower, C ¼ L�1AL�H ;

if comp type ¼ Nag Compute 2 or Nag Compute 3,

if uplo ¼ Nag Upper, C ¼ UAUH ;

if uplo ¼ Nag Lower, C ¼ LHAL.

Constraint: comp type ¼ Nag Compute 1, Nag Compute 2 or Nag Compute 3.

3: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how B has been
factorized, as follows:

if uplo ¼ Nag Upper, the upper triangular part of A is stored and B ¼ UHU ;

if uplo ¼ Nag Lower, the lower triangular part of A is stored and B ¼ LLH .

Constraint: uplo ¼ Nag Upper or Nag Lower.

4: n – Integer Input

On entry: n, the order of the matrices A and B.

Constraint: n � 0.

5: ap½dim� – Complex Input/Output

Note: the dimension, dim, of the array ap must be at least maxð1; n� ðnþ 1Þ=2Þ.
On entry: the symmetric matrix A, packed by rows or columns. The storage of elements aij
depends on the order and uplo parameters as follows:

if order ¼ Nag ColMajor and uplo ¼ Nag Upper,
aij is stored in ap½ðj� 1Þ � j=2þ i� 1�, for i � j;

if order ¼ Nag ColMajor and uplo ¼ Nag Lower,
aij is stored in ap½ð2n� jÞ � ðj� 1Þ=2þ i� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Upper,
aij is stored in ap½ð2n� iÞ � ði� 1Þ=2þ j� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Lower,
aij is stored in ap½ði� 1Þ � i=2þ j� 1�, for i � j.

On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower triangle
of C as specified by comp_type and uplo, using the same packed storage format as described
above.

6: bp½dim� – const Complex Input

Note: the dimension, dim, of the array bp must be at least maxð1; n� ðnþ 1Þ=2Þ.
On entry: the Cholesky factor of B as specified by uplo and returned by nag_zpptrf (f07grc).

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

f08tsc NAG C Library Manual

f08tsc.2 [NP3645/7]

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B�1 if
(comp type ¼ Nag Compute 1) or B (if comp type ¼ Nag Compute 2 or Nag Compute 3). When the
function is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there
may be a significant loss of accuracy if B is ill-conditioned with respect to inversion. See the document
for F02HDF for further details.

8 Further Comments

The total number of real floating-point operations is approximately 4n3.

The real analogue of this function is nag_dspgst (f08tec).

9 Example

To compute all the eigenvalues of Az ¼ �Bz, where

A ¼

�7:36þ 0:00i 0:77� 0:43i �0:64� 0:92i 3:01� 6:97i
0:77þ 0:43i 3:49þ 0:00i 2:19þ 4:45i 1:90þ 3:73i

�0:64þ 0:92i 2:19� 4:45i 0:12þ 0:00i 2:88� 3:17i
3:01þ 6:97i 1:90� 3:73i 2:88þ 3:17i �2:54þ 0:00i

1
CCA

0
BB@

and

B ¼

3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

1
CCA

0
BB@ ;

using packed storage. Here B is Hermitian positive-definite and must first be factorized by nag_zpptrf
(f07grc). The program calls nag_zhpgst (f08tsc) to reduce the problem to the standard form Cy ¼ �y; then
nag_zhptrd (f08gsc) to reduce C to tridiagonal form, and nag_dsterf (f08jfc) to compute the eigenvalues.

9.1 Program Text

/* nag_zhpgst (f08tsc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>

int main(void)
{

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08tsc

[NP3645/7] f08tsc.3

/* Scalars */
Integer i, j, n, ap_len, bp_len, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;

/* Arrays */
char uplo_char[2];
Complex *ap=0, *bp=0, *tau=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]
#define B_UPPER(I,J) bp[J*(J-1)/2 + I - 1]
#define B_LOWER(I,J) bp[(2*n-J)*(J-1)/2 + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]
#define B_LOWER(I,J) bp[I*(I-1)/2 + J - 1]
#define B_UPPER(I,J) bp[(2*n-I)*(I-1)/2 + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08tsc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);
ap_len = n * (n +1)/2;
bp_len = n * (n +1)/2;
d_len = n;
e_len = n-1;
tau_len = n;

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, Complex)) ||

!(bp = NAG_ALLOC(bp_len, Complex)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(tau = NAG_ALLOC(tau_len, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

{
Vscanf(" (%lf , %lf)", &A_UPPER(i,j).re,

&A_UPPER(i,j).im);
}

f08tsc NAG C Library Manual

f08tsc.4 [NP3645/7]

}
Vscanf("%*[^\n] ");
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

{
Vscanf(" (%lf , %lf)", &B_UPPER(i,j).re,

&B_UPPER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

{
Vscanf(" (%lf , %lf)", &A_LOWER(i,j).re,

&A_LOWER(i,j).im);
}

}
Vscanf("%*[^\n] ");
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

{
Vscanf(" (%lf , %lf)", &B_LOWER(i,j).re,

&B_LOWER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
/* Compute the Cholesky factorization of B */
f07grc(order, uplo, n, bp, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07gdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce the problem to standard form C*y = lambda*y, storing */
/* the result in A */
f08tsc(order, Nag_Compute_1, uplo, n, ap, bp, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08tsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
f08gsc(order, uplo, n, ap, d, e, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08gsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Calculate the eigenvalues of T (same as C) */
f08jfc(n, d, e, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08jfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues */
Vprintf("Eigenvalues\n");
for (i = 1; i <= n; ++i)

Vprintf("%8.4f%s", d[i-1], i%9==0 || i==n ?"\n":" ");
Vprintf("\n");

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08tsc

[NP3645/7] f08tsc.5

END:
if (ap) NAG_FREE(ap);
if (bp) NAG_FREE(bp);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (tau) NAG_FREE(tau);

return exit_status;
}

9.2 Program Data

f08tsc Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-7.36, 0.00)
(0.77, 0.43) (3.49, 0.00)
(-0.64, 0.92) (2.19,-4.45) (0.12, 0.00)
(3.01, 6.97) (1.90,-3.73) (2.88, 3.17) (-2.54, 0.00) :End of matrix A
(3.23, 0.00)
(1.51, 1.92) (3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) (4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) (2.33, 0.14) (4.29, 0.00) :End of matrix B

9.3 Program Results

f08tsc Example Program Results

Eigenvalues
-5.9990 -2.9936 0.5047 3.9990

f08tsc NAG C Library Manual

f08tsc.6 (last) [NP3645/7]

	f08tsc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	comp_type
	uplo
	n
	ap
	bp
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

