f08 — Least-squares and FEigenvalue Problems (LAPACK) fO8tsc

NAG C Library Function Document

nag zhpgst (f08tsc)

1 Purpose

nag_zhpgst (f08tsc) reduces a complex Hermitian-definite generalized eigenproblem Az = A\Bz, ABz = \z
or BAz = Az to the standard form Cy = Ay, where A is a complex Hermitian matrix and B has been
factorized by nag_zpptrf (f07grc), using packed storage.

2 Specification

void nag_zhpgst (Nag_OrderType order, Nag_ComputeType comp_type,
Nag_UploType uplo, Integer n, Complex ap[], const Complex bp[], NagError *fail)

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem Az = ABz, ABz = Az or BAz = Az
to the standard form Cy = Ay using packed storage, this function must be preceded by a call to nag_zpptrf
(f07grc) which computes the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the parameter comp_type, as indicated in the table below.
The table shows how C' is computed by the function, and also how the eigenvectors z of the original
problem can be recovered from the eigenvectors of the standard form.

comp_type | Problem uplo B C z

1 Az = ABz | Nag Upper | U7y | U 7 AU! U_ly
Nag Lower | ;rH | 1147 H L*Hy

2 ABz = Az | Nag _Upper | U7y | vAU" U’ly
Nag Lower | ;17 | [H 4T L y

3 BAz=)z | Nag_Upper | g2y | vAU" vt Yy
Nag_Lower | ;1 H | [HAgTL Ly

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: comp_type — Nag ComputeType Input
On entry: indicates how the standard form is computed as follows:

if comp_type = Nag_Compute_1,

[NP3645/7] f08tsc.1

fO8tsc NAG C Library Manual

if uplo = Nag_Upper, C =U 7 AU !;
if uplo = Nag_Lower, C = L 'AL ™",
if comp_type = Nag_Compute_2 or Nag_Compute_3,
if uplo = Nag_Upper, C = UAU";
if uplo = Nag_Lower, C' = L7 AL.
Constraint: comp_type = Nag_Compute_1, Nag_Compute_2 or Nag_Compute_3.

3: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how B has been
factorized, as follows:

if uplo = Nag_Upper, the upper triangular part of A is stored and B =U y,

if uplo = Nag_Lower, the lower triangular part of A is stored and B = LL".
Constraint: uplo = Nag_Upper or Nag_Lower.

4: n — Integer Input
On entry: n, the order of the matrices A and B.

Constraint: n > 0.

5; ap[dim] — Complex Input/Output
Note: the dimension, dim, of the array ap must be at least max(l,n x (n+1)/2).

On entry: the symmetric matrix A, packed by rows or columns. The storage of elements a;
depends on the order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ap[(j — 1) x j/2 +4 — 1], for i < j;
if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ap[(2n — j) x (j —1)/2 41 — 1], for i > j;
if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ap[(2n — i) x (i —1)/2 4 j — 1], for i < j;
if order = Nag_RowMajor and uplo = Nag Lower,
a;; is stored in ap[(i — 1) x i/2 4 j — 1], for i > j.
On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower triangle
of C as specified by comp_type and uplo, using the same packed storage format as described
above.
6: bp[dim] — const Complex Input
Note: the dimension, dim, of the array bp must be at least max(1,n x (n+1)/2).

On entry: the Cholesky factor of B as specified by uplo and returned by nag_zpptrf (f07grc).

7: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

f08tsc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08tsc

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Forming the reduced matrix C' is a stable procedure. However it involves implicit multiplication by B7lif
(comp_type = Nag Compute_1) or B (if comp_type = Nag Compute 2 or Nag Compute_3). When the
function is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there
may be a significant loss of accuracy if B is ill-conditioned with respect to inversion. See the document
for FO2HDF for further details.

8 Further Comments

The total number of real floating-point operations is approximately 4n?,

The real analogue of this function is nag_dspgst (f08tec).

9 Example

To compute all the eigenvalues of Az = A\Bz, where

—7.36+0.00¢ 0.77—-0.43: —0.64 —0.92¢ 3.01 —697¢
0.7740.437 3.4940.00¢ 2.19 +4.45¢ 1.90 +3.734

A= —0.64 +0.927 2.19 —4.45¢ 0.12 4+ 0.00: 2.88 —3.171¢
3.014+6.97: 1.90—3.734 2.88+3.17t —2.54 4+ 0.00:
and
3.23 4+ 0.00¢ 1.51 — 1.92; 1.90 4 0.84% 0.42 4 2.50¢
B 1.51 4+ 1.92: 3.58+0.000 —-0.23+1.11¢ —-1.1841.37¢

1.90 - 0.84: —-0.23 —1.11% 4.09 4 0.00¢ 233 - 0.14
042 -2500 —-1.18—-1.37: 2.3340.14 4.29 4 0.00¢

using packed storage. Here B is Hermitian positive-definite and must first be factorized by nag_zpptrf
(f07grc). The program calls nag_zhpgst (f08tsc) to reduce the problem to the standard form Cy = Ay; then
nag_zhptrd (f08gsc) to reduce C' to tridiagonal form, and nag_dsterf (f08jfc) to compute the eigenvalues.

9.1 Program Text

/* nag_zhpgst (f£08tsc) Example Program.
* Copyright 2001 Numerical Algorithms Group.
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>

int main(void)

{

[NP3645/7] f08tsc.3

f08tsc

/* Scalars *x/

Integer i, j, n, ap_len, bp_len, d_len,
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2];
Complex #*ap=0, *bp=0, *tau=0;
double *d=0, *e=0;
#ifdef NAG_COLUMN_MAJOR
#define A _UPPER(I,J) aplJ*(J-1)/2 + I - 1]
#define A_LOWER(I,J) [(Z*n J)*(J—l)/2 +
#define B_UPPER(I,J) bpl[J* 1)/2 + I - 1]
#define B_LOWER(I,J) [(2*n J)*(J-1)/2 +
order = Nag_ColMajor,
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) apl[(2*n-I)*(I-1)/2 +
#define B_LOWER(I,J) bpl[I*(I-1)/2 + J - 1]
#define B_UPPER(I,J) bpl[(2*n-I)=*(I-1)/2 +
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

e_len, tau_len;
I - 1]
I - 1]
J - 1]
J - 1]

Vprintf ("£08tsc Example Program Results\n\n");

/* Skip heading in data file =*/

Vscanf ("s*x["\n] ");

Vscanf ("$1d%*[*\n] ", &n);
ap_len = n * (n +1)/2;
bp_len = n * (n +1)/2;
d_len = n

e_len = n-1;

tau_len = n

/* Allocate memory */

if ((ap = NAG_ALLOC (ap_len, Complex))
|(p = NAG_ALLOC(bp_len, Complex))
! (d = NAG_ALLOC(d_len, double)) ||
(e = NAG_ALLOC(e_len, double)) ||
1 (t = NAG_ALLOC(tau_len, Complex)
{

Vprintf ("Allocation failure\n")
exit_status -1;
goto END;

}

/* Read A and B from data file =*/
Vscanf (" ' %1s '%*["\n] ", uplo_char);
if (*(unsigned char #*)uplo_char L")
uplo = Nag_Lower;
else if (*(unsigned
uplo = Nag_Upper;
else

{

char *)uplo_char ==

Vprintf ("Unrecognised character for
exit_status -1;
goto END;

3
if (uplo == Nag_Upper)
{

for (1 = 1; 1 ++1)

{

<= n;

for

{

(3 = 1; J <= n; ++3)

Vscanf (" (%1f ,
&A_UPPER (i

S1f)",
Ij)-im);

&A

f08tsc.4

_UPPER(1,7)

))

Nag_UploType type\n")

.re,

NAG C Library Manual

i

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08tsc

¥
Vscanf ("sx[*\n] ");
for (i = 1; i <= n; ++1i)
{
for (3 = i; j <= n; ++3)
{
Vscanf (" (%1f , %1f)", &B_UPPER(i,Jj).re,
&B_UPPER(1i,j).im);
}
¥
Vscanf ("sx["\n] ");
}
else
{
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= 1i; ++3j)
{
Vscanf (" (%1f , %1f)", &A_LOWER(i,j).re,
&A_LOWER(1,3).1im);
}
¥
Vscanf ("sx["\n] ");
for (1 = 1; 1 <= n; ++1)
{
for (j = 1; j <= i; ++3)
{
Vscanf (" (%1f , %1f)", &B_LOWER(i,j).re,
&B_LOWER(i,3j) .1im) ;
}
¥
Vscanf ("s*[*\n] ");
}

/* Compute the Cholesky factorization of B */
f07grc(order, uplo, n, bp, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£07gdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

b
/* Reduce the problem to standard form C*y = lambda*y, storing */
/* the result in A */
f08tsc(order, Nag_Compute_1, uplo, n, ap, bp, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08tsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
f08gsc(order, uplo, n, ap, d, e, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08gsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Calculate the eigenvalues of T (same as C) */
f08jfc(n, d, e, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08jfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥
/* Print eigenvalues */
Vprintf ("Eigenvalues\n") ;
for (i = 1; 1 <= n; ++1)
Vprintf ("%8.4f%s", d[i-1], i%9==0 || i==n 2"\n":" ");
Vprintf ("\n") ;

[NP3645/7] f08tsc.5

f08tsc

END:

if
if
if
if
if

p) NAG_FREE (ap);
p) NAG_FREE (bp) ;
) NAG_FREE(4) ;
) NAG_FREE (e) ;
a

(
(
(
(
(tau) NAG_FREE (tau);

return exit_status;

9.2 Program Data

f08tsc Example Program Data

ORrRPRPwWwwOoOOJIH

9.3

~

.36, 0.00)

.77, 0.43) (3.49, 0.00)

.64, 0.92) (2.19,-4.45) (0.12, 0.00)

.01, 6.97) (1.90,-3.73) (2.88, 3.17) (-2.54, 0.00)
.23, 0.00)

.51, 1.92) (3.58, 0.00)

.90,-0.84) (-0.23,-1.11) (4.09, 0.00)

.42,-2.50) (-1.18,-1.37) (2.33, 0.14) (4.29, 0.00)

Program Results

f08tsc Example Program Results

Eigenvalues
-5.9990 -2.9936 0.5047 3.9990

NAG C Library Manual

:Value of N
:Value of UPLO

:End of matrix A

:End of matrix B

J08tsc.6 (last)

[NP3645/7]

	f08tsc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	comp_type
	uplo
	n
	ap
	bp
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

